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ABSTRACT
o Br Br 3 steps
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O N2 cat. O 5steps
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1,3-Dipolar cycloaddition of propargyl bromide with the carbonyl ylide derived from 6-diazoheptane-2,5-dione is the key step in concise syntheses
of cis-nemorensic acid and 4-hydroxy-cis-nemorensic acid.

The stereoselective preparation of highly substituted oxygennemorensic acid both used alkenes which are tethered to a
heterocycles, especially structurally complex tetrahydro- furarf@or oxidopyryliunfd via a sulfur atom; these intramo-
furans, has attracted considerable attention in recent years.lecular cycloadditions nicely ensure complete control of both
A rich source of such synthetically challenging tetrahydro- the tetrahydrofuran substitution pattern and, following reduc-
furans is theSenecicclass of pyrrolizidine alkaloids, (€.9.,  tive removal of sulfur, theis-orientation between the C-2
Figure 1)? These natural products show diverse biological and c-3 Me groups (Figure 1).
activity ranging from potent hepatotoxicity to antitumour
activity 3

The synthesis of nemorensic acid (the dicarboxylic (necic)
acid obtained from nemorensine) has been accomplished by
a number of inventive approachidowever, these strategies \4—39
are not directly applicable to the tetrahydrofuran stereo- &
chemistry found in mulgediifoline and (hydroxy)retroisos- J\
enine. For example, the two cycloaddition approaches to © o
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In connection with our interest in tandem carbonyl ylide
formation—1,3-dipolar cycloaddition of diazocarbonyl com-
pounds in natural product synthesisye considered that
oxidative cleavage of the ring originally derived from a cyclic
carbonyl ylide (e.g.4, Scheme 1) could provide a straight-
forward synthesis of polysubstituted tetrahydrofurans, and
in particular an efficient entry to the previously unsynthesized
cis-nemorensic acids and2.8

Scheme 1. Retrosynthetic Analysis of Necic Acids
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Pioneering studies by Padwa et al. have established Rh-

(IN-catalyzed tandem carbonyl ylide formatief,3-dipolar
cycloaddition of diazocarbonyl compounds as an excellent
method for the synthesis of oxapolycyclelndeed, Padwa
has shown that diazodiongb undergoes intermolecular
cycloaddition with propargy! chloride (in our desired regio-
chemical sense, and in 60% yiefdjus providing encourag-
ing precedent for the approach we wished to investigate.

Nevertheless, it was not clear at the outset of our studies if

ana-alkyl (e.g., methyl)o-diazoketone would successfully
undergo carbonyl ylide formation and 1,3-dipolar cycload-
dition® or if the additional Me substituent would affect
cycloaddition regioselectivity.

In the event diazodion®ga (readily available from levulinic
acid 6 and diazoethart® underwent RE(OAc),-catalyzed
tandem carbonyl ylide formatiercycloaddition with prop-
argyl bromide to give cycloaddu®a in good yield (84%,
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Scheme 2. Synthesis otis-Nemorensic Acidl?
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a(a) EgN (1 equiv), CICQCH,CHMe;, (1 equiv), EtO, 0— 25
°C, 2 h, then MeCHB(4 equiv), EfO, 0°C, 18 h; (b) BrCHC=CH
(3 equiv), RR(OAC), (cat.), CHCI,, 25°C, 3 h; (c) H (1 atm),
Pd/C (10%), MeOH, 25C, 48 h; (d) LDA (1.1 equiv), THF-78
°C, 2 h, then TMSCI (2 equiv);-78 — 25 °C, 1 h; (e) Q/O;,
CH,Cl,, —78°C, 5 min, then 35% kD, (12 equiv), 88% HCGH
(46 equiv), 100°C, 30 min.

Scheme 2J! That cycloaddition had occurred with the
desired regioselectivity was initially indicated by NOE
studies (and ultimately confirmed by X-ray crystallographic
analysis, vide infra).

Reaction of cycloadducBa with H,—Pd/C in MeOH
effected both hydrogenolysis of the C—Br bond agxb
selective alkene hydrogenation to give a single saturated
ketone7 (92%), with the correct relative stereochemistry at
all three stereocenters faris-nemorensic acid synthesis.
Thus, propargyl bromide functions as a convenient equivalent
of propene in this two-step cycloaddition reduction sequence.
Propene itself proved unreactive in the cycloaddition step.
This is not surprising, given the lack of success with other
unstrained alkenes in attempted related intermolecular cyclo-
additions® Propyne (present in excess) did undergo success-
ful cycloaddition to give a single cycloaddu8t and in good
yield (87%). Interestingly, addition of trace amounts of HBr
(conditions otherwise as in Scheme 2) was found to be
necessary to effect hydrogenation of cycloadd@lcto give
ketone7 (91%). Formation of the silyl enol eth& (90%)
under standard conditio'swas followed by oxidative
cleavage to giveis-nemorensic acid. This latter step was
efficiently carried out (97% from silyl enol ethe3) by
ozonolysis and reaction of the crude ozonide with aqueous
formic acid and hydrogen peroxide. Spectral data for
syntheticcis-nemorensic acid were in accord with those
of the natural isolaté? X-ray crystallographic analysis of
our synthetic material (Figure 2) provided unequivocal
confirmation®®

It was envisaged (Scheme 1) that cycloadd@uttight also

be used to access more highly functionalized tetrahydro-

(11) A small amount (<5% byH NMR) of the regioisomeric cycload-
duct was generated which was easily removed by column chromatography.
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Attempted formation of alcohdl1 directly from epoxide
9 using H—Pd/C in MeOH proceeded in modest yield to
generate an inseparable mixture Idf and 7-epi-11(45%
total yield; 11:7-epill, 3:2). Higher stereoselectivityl 1:
7-epill, 9:1) was achieved if epoxidewas convertetf to
allylic alcohol 10 (97%) prior to hydrogenation, but the
overall yield remained low (36%). Hydroxyl-directed homo-
geneous hydrogenation of allylic alcoh in the presence
of Crabtree’s catalyst generated alcohbin excellent yield
(93%) as a single stereoisomer. The relative stereochemistry
of alcohol 11 was established to be that required for
Figure 2. X-ray structure ofcis-nemorensic acid. 4-hydroxy-cis-nemorensic aclby X-ray crystallographic
analysis'® Silyl enol etherl2 formation was effected (with
concomitant silyation of the secondary alcohol) to give disilyl
ether12 (90%). Ozonolysis of disilyl ethet2 followed by
oxidative workup, as in oucis-nemorensic acid synthesis,
gave 4-hydroxy-cis-nemorensic aclin excellent yield
(97%), and with spectral data consistent with the natural
material?®

In summary, using cycloadduBa as a pivotal intermedi-
ate, we have developed truly concise, sterecontrolled syn-
theses of previously unsynthesize-nemorensic acids,
demonstrating the power of tandem carbonyl ylide forma-

furans, in particular 4-hydroxy-cis-nemorensic a2idthe
necic acid obtained from recently reported 12-hydroxy-
retroisoseninéy by (formal) exaselective anti-Markovnikov
hydration of the embedded dihydrofuran, prior to oxidative
cleavage as before. This was achieved starting with epoxi-
dation of cycloadducBa (Scheme 3). Epoxidation to give a

Scheme 3. Synthesis of 4-Hydroxy-cis-nemorensic AQd

Br Br b oH tion—cycloaddition in natural product synthesis. While the
4 @ ,.@ . syntheses reported herein are racemic, the strategy offers the
0 94% o 9% o) attractive prospect of an enantioselective entry using a chiral
o o o catalyst in the ylide formationcycloaddition’ Efforts along
3a 9 10 ;
these lines are underway.
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